首页> 外文OA文献 >Streaming Elements for FPGA Signal and Image Processing Accelerators
【2h】

Streaming Elements for FPGA Signal and Image Processing Accelerators

机译:FPGA信号和图像处理加速器的流元素

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Field programmable gate array devices boast abundant resources with which custom accelerator components for signal, image and data processing may be realised; however, realising high performance, low cost accelerators currently demands manual register transfer level design. Software-programmable ’soft’ processors have been proposed as a way to reduce this design burden but they are unable to support performance and cost comparable to custom circuits. This paper proposes a new soft processing approach for FPGA which promises to overcome this barrier. A high performance, fine-grained streaming processor, known as a Streaming Accelerator Element, is proposed which realises accelerators as large scale custom multicore networks. By adopting a streaming execution approach with advanced program control and memory addressing capabilities, typical program inefficiencies can be almost completely eliminated to enable performance and cost which are unprecedented amongst software-programmable solutions. When used to realise accelerators for fast fourier transform, motion estimation, matrix multiplication and sobel edge detection it is shown how the proposed architecture enables real-time performance and with performance and cost comparable with hand-crafted custom circuit accelerators and up to two orders of magnitude beyond existing soft processors.
机译:现场可编程门阵列设备拥有丰富的资源,利用这些资源可以实现用于信号,图像和数据处理的定制加速器组件。但是,要实现高性能,低成本的加速器,目前需要手动进行寄存器传输级别设计。已经提出了软件可编程的“软”处理器来减轻这种设计负担,但是它们无法支持与定制电路相当的性能和成本。本文提出了一种新的FPGA软处理方法,有望克服这一障碍。提出了一种高性能,细粒度的流处理器,称为流加速器元素,可将加速器实现为大规模定制多核网络。通过采用具有高级程序控制和存储器寻址功能的流执行方法,几乎​​可以完全消除典型的程序效率低下的情况,从而实现性能和成本,这在软件可编程解决方案中是前所未有的。当用于实现用于快速傅立叶变换,运动估计,矩阵乘法和sobel边缘检测的加速器时,它展示了所提出的体系结构如何实现实时性能,并且性能和成本与手工定制的电路加速器可媲美,并且高达两个数量级。规模超过现有的软处理器。

著录项

  • 作者

    Wang, Peng; McAllister, John;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号